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Abstract. In a parabolic band, the momentum and velocity relaxation rates of electrons
(associated with scattering) are identical. However, if a magnetic field is present, they are
fundamentally different quantities that can haveoppositesigns over quite wide ranges of the
electron’s kinetic energy. Consequently, it is possible that electrons willlosemomentum during a
scattering event and yetgainvelocity. In narrow InAs quantum wires subjected to a high magnetic
field, we show that this can cause the ensemble average momentum and velocity relaxation rates
to have opposite signs in realistic situations.

1. Introduction

The difference between the ‘dynamical momentum’ and ‘kinematic momentum’ of an electron
in a magnetic field is well known in the context of both classical [1] and quantum mechanics [2].
In a crystal, the dynamical momentum is the crystal momentum ¯hEk (whereEk is the electron’s
wavevector) and the kinematic momentum ism∗Ev (whereEv is the electron’s velocity andm∗

the effective mass which is constant if the conduction band is parabolic). The two are related
by h̄Ek = m∗Ev + q EA whereq is the particle charge andEA is the magnetic vector potential. This
difference between ¯hEk andm∗Ev automatically causes a difference between the momentum and
velocity relaxation rates whenever a magnetic field is present.

2. Velocity and momentum relaxation of carriers in a magnetic field

We will study the above difference in a quantum wire which has only one free direction for
particle transport. An external magnetic field is applied perpendicular to the wire axis and
an electric field is oriented along the axis to induce carrier transport. The momentum and
velocity relaxation rates,τ−1

m andτ−1
v , associated with phonon scattering, are calculated from

the usual prescription of weighting the scattering rateS(Eν,E
′
ν ′ ± γ,±ωγ ) by the relative

momentum or velocity change, and then integrating over all possible final electron states and
phonon wavevectors [3]:

1

τm(Eν)
= 2L

π

∑
n

∫ ∞
0

∫ γmax

0
D(E′ν ′) dE′ν ′ dγ S(Eν,E

′
ν ′ ,±ωn,γ )(1− f (E′ν ′))

(k − k′)
k

(1)
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1

τv(Eν)
= 2L

π

∑
n

∫ ∞
0

∫ γmax

0
D(E′ν ′) dE′ν ′ dγ S(Eν,E

′
ν ′ ,±ωn,γ )

× (1− f (E′ν ′))
(vν(k)− v′ν ′(k′))

vν(k)
(2)

wherek is the electron’s initial wavevector in the unconfined direction,D(E′ν ′) is the density
of final states,f (E′ν ′) is the occupation probability of the electron’s final state (after scattering)
which is negligible compared to unity for a non-degenerate electron gas,Eν is the electron’s
initial energy in theνth magnetoelectric transverse subband,vν(k) (=(1/h̄)(∂Eν/∂k)) is the
electron’s initial velocity in that subband [6],v′ν ′(k

′) is the final velocity,γ is the wavevector
of the phonon (of energy ¯hωn,γ belonging to thenth phonon branch) which is involved in the
scattering andS is the scattering rate. The primed and unprimed quantities pertain to final and
initial states of the electron respectively. Physically, the two quantities in equations (1) and
(2) describe the rate at which momentum and velocity gained from a driving electric and/or
magnetic field is lost to the lattice through phonon-mediated collisions. Thus, they are the
rates that will enter a momentum or velocity balance equation.

A magnetic field affects the relaxation rates by alteringD(E′ν ′), S and, most importantly,
vν(k) andv′ν ′(k

′). Note that the definition of velocityvν(k) (vν(k) = (1/h̄)(∂E/∂k) [6]) is
gauge independent and denotes a physical observable. The momentum ¯hk also has a physical
meaning since it is the quantity conserved in a scattering event with or without a magnetic
field [4]. Thus, the quantities in equations (1) and (2) are physically meaningful.

In all our calculations, we rigorously account for both electron and phonon confinement.
The magnetoelectrically confined electron states and their energy dispersion relations are found
by solving the Schr̈odinger equation in a quantum wire subjected to a magnetic field [5]
and the phonon normal modes as well as their dispersion relations are found by solving the
elasticity equation numerically [8,9]. In equations (1) and (2), the summation over the index
n represents summation over confined phonon modes or branches. The calculations of the
dispersion relationsEν versusk for magnetoelectric subbands, the velocityvν(k), the electron
wavefunctions in a magnetic field etc, have been described by us previously [5, 8, 9, 13] and
will not be repeated here.

In the absence of a magnetic field (EA = 0), electron velocity in a parabolic band is always
proportional to the momentum. Consequently (see equations (1) and (2)), the velocity and
momentum relaxation rates are identical. However, when a magnetic field is present, the
energy dispersion relations become immediately non-parabolic (see figure 2 later) with the
result that the two rates are no longer equal. This, by itself, is not surprising, but whatis
counter-intuitive is that the two rates can even have opposite signs. It is this feature that we
address and elucidate in this paper.

2.1. The origin of opposite signs: confined acoustic phonon scattering

In figure 1, we show the velocity-versus-wavevector relation for the three lowest magneto-
electric subbands in an intrinsic free-standing InAs quantum wire of rectangular cross section
subjected to a magnetic flux density of 25 T [7]. These curves were calculated according
to the prescription of reference [5]. Since they are not linear, velocity isnot proportional to
crystal momentum ¯hk and henceτ−1

m andτ−1
v are distinct. Only at large wavevectors (when

h̄k � q EA) does the relationship begin to assume linearity. This figure also schematically
depicts transitions that involve loss of momentum but gain of velocity (A–D), loss of momentum
but no change in velocity (A–B) and gain of velocity but no change in momentum (A–C). In such
transitions, clearly,τ−1

m 6= τ−1
v and, in the first example (A–D), they even have opposite signs.
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Figure 1. The solid curves represent the velocity-versus-wavevector relation for the first three
subbands in an InAs quantum wire with rectangular cross section of 500 Å× 40 Å subjected to
a magnetic field of 25 T. The conduction band is assumed to be parabolic. The broken line is the
velocity–wavevector relation when no magnetic field is present (it is the same for all subbands).
Shown are three transitions that result in no velocity relaxation but momentum relaxation (A–
B), no momentum relaxation but velocity relaxation (A–C) and opposite signs of momentum and
velocity relaxation (A–D). This figure also shows that the velocity change1v for a given wavevector
change1k is much larger at large wavevectors than at small wavevectors. Consequently, a forward-
scattering event and a backward-scattering event (with the same initial wavevector) which cause
the same amount of momentum relaxation, result in unequal amounts of velocity relaxation. The
forward-scattering event takes an electron to larger wavevectors and therefore is more efficient in
relaxing velocity than the backscattering event which takes an electron to smaller wavevectors.

In figure 2, we show the energy-versus-wavevector (Eν–k) dispersion relations for the
magnetoelectric subbands in a free-standing InAs wire of width 500 Å and thickness 40 Å.
The magnetic flux density is 25 T. The flat regions of the subbands correspond to closed Landau
orbits which have no resultant translational velocity (and hence have zero slope). A ‘horizontal’
transition of the type marked ‘1’ will result in a non-zero momentum relaxation rateτ−1

m , but
no velocity relaxation and hence noτ−1

v . This transition corresponds to scattering between two
Landau orbits centred at two different locations. These are highly probable transitions since
the scattering rate is proportional to the density of final states which is very large at the subband
bottoms. One would assume that because of these transitions, the momentum relaxation rate
should exceed the velocity relaxation rate and indeed it does when suchelastic transitions
are dominant. However, in this paper, we are consideringconfinedphonon scatterings and
most of them are inelastic (very few confined acoustic phonon branches can produce zero-
energy phonons [9]). Nonetheless, it turns out that in the case of interactions with acoustic
phonons (which still have relatively small energy), the transitions are quasi-elastic and almost
‘horizontal’ (of the type marked ‘3’ in figure 2). Consequently, the momentum relaxation rate
generally does exceed the velocity relaxation rate (τ−1

v < τ−1
m ) for acoustic phonon interactions.

In figures 3(a) and 3(b), we show the velocity and momentum relaxation rates associated
with non-polar acoustic (deformation potential) and polar acoustic (piezoelectric) phonon
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Figure 2. The energy–wavevector relation for magnetoelectric subbands in the InAs quantum
wire in a magnetic flux density of 25 T. The transition ‘1’ is a‘horizontal’ elastic backward intra-
subband scattering which causes momentum relaxation but no velocity relaxation. Transition ‘2’
is a ‘vertical’ inelastic inter-subband scattering with no change in momentum but a finite change
in velocity. Transition ‘3’ is a backward intra-subband emission with positive momentum and
velocity relaxation rates and transition ‘4’ is intra-subband absorption with a negative momentum
and velocity relaxation rates.

scattering as functions of an electron’s initial kinetic energy. The phonons are assumed to be
in thermodynamic equilibrium, so their distribution is governed by Bose–Einstein statistics.
The electron is always initially in the lowest subband. The peaks in the scattering rates arise
from the van Hove singularities in the joint electron–phonon density of states [5, 8, 9, 13].
In the preceding paragraph we explained whyτ−1

v < τ−1
m for acoustic phonon interactions,

but now we will explain why the two rates can even haveoppositesigns at energies well
below the second subband bottom. At these low energies, electron interactions are mostly
intra-subband scattering within the lowest magnetoelectric subband since the higher subbands
are not accessible in energy (except by absorbing highly energetic phonons which are scarce
because their population is governed by Bose–Einstein statistics). The two dominant intra-
subband acoustic phonon scattering mechanisms in this case arebackwardemission and
forwardabsorption. Backward scatterings are those in which an electron’s forward momentum
decreases (k′ < k) whereas in forward scattering it increases (k′ > k). Consequently,
backscattering results in a positive momentum relaxation rate and forward scattering in a
negative momentum relaxation rate. In a magnetic field, intra-subband backscattering events
which change the sign of an electron’s momentumare known to be strongly suppressed [10],
but those which merely decrease the electron’s momentum without changing its sign are not
suppressed (the inset of figure 3(b) distinguishes between these two types of intra-subband
backscattering; type ‘1’ and type ‘2’, respectively). In the case of deformation potential
scattering, backward emission (of the second type) is quite frequent and dominates over
forward absorption. Consequently, the overall momentum relaxation rate ispositive. Backward
emission of the second type also occurs in the transitions marked ‘3’ in figure 2. Although
they cause significant momentum relaxation, it should be obvious from figure 2 that they cause
negligible velocity relaxation. On the other hand, forward absorption (the transition marked
‘4’ in figure 2) causes much larger velocity relaxation for the same change in momentum. This
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Figure 3. Velocity and momentum relaxation rates for acoustic phonon scattering in a magnetic flux
density of 25 T and at a temperatureT = 77 K. The rates are plotted versus initial electron kinetic
energy which is measured from the bulk conduction band edge. Thin curves show the momentum
relaxation rate and thick curves the velocity relaxation rate. The dashed curves indicate negative
sign: (a) deformation potential scattering (AC); (b) piezoelectric scattering (PZ). The inset in (b)
shows two different types of backward emission: (1) changes the sign of the electron’s momentum
and (2) does not change the sign although the momentum decreases. The third transition shows a
backward absorption that changes the sign of the momentum.

fact becomes even clearer upon examining figure 1 which shows the relation between velocity
and wavevector. Note that the curves in figure 1 aresuperlinear, so the velocity change1v for
a given wavevector change1k is much smaller at small wavevectors than at large wavevectors
(the1v associated with two equal increments ink are shown in figure 1). As a consequence of
this feature, forward absorption, even though rarer than backward emission of type 2, results in a
much larger1v and hence makes a larger contribution to the velocity relaxation than backward
emission. Since the velocity relaxation rate associated with forward-scattering processes is
negative, the overall velocity relaxation rate, unlike the momentum relaxation rate, is negative.
All of this explains whyτ−1

v can be negative andτ−1
m positive at low energies.
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2.2. Confined longitudinal and surface optical phonon scattering

In figure 4(a) we show the momentum and velocity relaxation rates associated with longitudinal
optical phonon scattering. For InAs, we assumed the following parameters [11, 12]: the
longitudinal polar optical phonon (POP) energy ¯hωL = 30.2 meV, the low-frequency relative
permittivity ε0 = 15.5, the high-frequency relative permittivityε∞ = 12.3. There are four
distinct peaks in figure 4(a) corresponding to intra-subband POP absorption (at the first subband
bottom), intra-subband POP emission (30.2 meV above the first subband bottom), inter-
subband POP absorption (30.2 meV below the second subband bottom) and inter-subband
POP emission (30.2 meV above the second subband bottom).

First, let us consider low energies below the second peak, i.e. below the polar optical
phonon energy in InAs, so that all emission processes are blocked by energy conservation.
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Figure 4. Velocity and momentum relaxation rates for optical phonon scattering in a magnetic
flux density of 25 T at a temperatureT = 77 K. (a) Confined polar optical phonons (LO),
h̄ωL = 30.2 meV; (b) surface optical phonons (SO), ¯hωSO = 30.0 meV.
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The allowed scattering mechanisms are then backward and forward absorption only. Backward
absorption events that cause a change of the sign in the electron’s momentum (type 3 in the inset
of figure 3(b)) are suppressed in a strong magnetic field [10]. Thus, the dominant scattering
mechanism is forward absorption which causes both velocity and momentum relaxation rates
to be negative. This is what we see in figure 4(a).

Once the electron’s kinetic energy exceeds the POP energy threshold, intra-subband
emission starts to dominate over absorption due to the much higher density of final states
(electrons are now scattered to the subband bottom where the density of states is singular).
Furthermore, spontaneous emission is much stronger than either absorption or stimulated
emission since the Bose distribution factorNh̄ωL ≈ 1/147. However, unlike absorption, intra-
subband emission can only cause a loss of momentum and velocity with or without a change
in the sign of the wavevector (transitions of type 1 and 2 in the inset of figure 3(b)). Type 1
scattering is quenched in a magnetic field, but events of type 2 are not. Thus, at electron energies
past the POP threshold, the onset of intra-subband emission reverts the signs of both velocity
and momentum relaxation rates to positive. Again, this is what we observe in figure 4(a).

Inter-subband absorption and emission (whose thresholds correspond to the third and
fourth peaks in figure 4(a)) are similar to intra-subband emission in the sense that they too can
only cause a loss of momentum with or without a change of the wavevector’s sign. Therefore,
these two types of scattering mechanism also lead to a positive sign of the velocity and
momentum relaxation rates. Consequently, we see only positive relaxation rates at energies
larger than the POP threshold (or past the second peak) in figure 4(a). The situation would have
been more complicated had a phonon energy been much larger than the energy of subband
separation. In that case, inter-subband absorption could conceivably take an electron very high
up in the destination subband and increase its velocity causing a negative velocity relaxation
rate while maintaining a positive momentum relaxation rate. This is somewhat akin to the
transition of the type A–D shown in figure 1. This process requires rather wide wires and
materials with large effective mass so that the subband separation in energy is smaller than
the phonon energy. We do not meet this requirement with our InAs wire of cross-section
500 Å× 40 Å, so this process is absent.

Figure 4(b) shows the momentum and velocity relaxation rates for surface optical phonon
scattering. The surface optical phonon energy was calculated for a free-standing quantum
wire following the prescription in [11,13]. For an InAs wire surrounded by vacuum (ε∞ = 1),
h̄ωSO = 30.0 meV. The rates exhibit the same features as in figure 4(a) and the only additional
feature is that the difference betweenτ−1

v andτ−1
m is larger at high energies. This particular

scattering mechanism is very anisotropic at high energies and ‘prefers’ interactions with
phonons of small wavevectors. The associated transitions are almost vertical (see type ‘2’
in figure 2). Consequently, they are not effective in relaxing momentum, but more efficient in
relaxing velocity. This leads to a more pronounced difference betweenτ−1

v andτ−1
m .

Finally, in figure 5, we show the total momentum and velocity relaxation rates obtained
by summing over the acoustic phonon, POP and SO phonon rates. Impurity and interface
scattering are neglected since their rates are three orders of magnitude smaller than the phonon
rates even in relatively dirty wires. The total rates mirror the acoustic phonon scattering rates
since those are, by far, the largest. This is a fortuitous turn of events since only the acoustic
phonon rates exhibitopposite signsover finite energy regions in our chosen example. It is also
true that confinement of acoustic phonons is important since it is confinement that increases
the scattering rates by three to four orders of magnitude over bulk acoustic phonon scattering
rates [13] thus making it the dominant scattering mechanism. The energy windows within
which τ−1

v andτ−1
m have opposite signs are actually quite wide (several tens of meV). This

allows ample space to place the electron distribution within the window and thus produce
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Figure 5. Overall velocity and momentum relaxation rates in a magnetic flux density 25 T and at
a temperatureT = 77 K. All phonon scattering mechanisms are included.

ensemble-averagedrates that have opposite signs. We stress that the width of the window
is larger for materials with low effective mass and wires of small cross-section. These two
properties are thus conducive to producing momentum and velocity relaxation rates of opposite
signs.

3. Ensemble-averaged rates

We now proceed to calculateensemble-averagedmomentum and velocity relaxation rates by
averaging over the electron distribution functionfν(vk) in every magnetoelectric subband [3]:〈

1

τm

〉
=
(∑
k,ν

fν(vk)k
1

τ νm(k)

)/(∑
k,ν

fν(vk)k

)
(3)〈

1

τv

〉
=
(∑
k,ν

fν(vk)vk
1

τ νv (k)

)/(∑
k,ν

fν(vk)vk

)
. (4)

We assumed that only the lowest magnetoelectric subband is occupied (ν = 1) and that
the distribution function is a drifted Maxwellian given byf (v) = exp(−m∗(v − vd)2/2kTe),
whereTe is the electron temperature andvd the drift velocity. Since in all of our calculations
kTe is more than an order of magnitude smaller than the subband separation, the occupation
of only one subband is a justifiable assumption. Furthermore, it is well known that the drifted
Maxwellian is an excellent approximation in the limit of strong electron–electron scattering.
We will assume that electron–electron scattering is frequent; yet we do not need to include this
process in the calculation of the total rate since electron–electron scattering does not contribute
to ensemble-averagedmomentum or velocity relaxation. In this type of scattering, whatever
momentum or velocity one electron loses is picked up by the other electron (we will neglect
Umklapp and anything other than binary electron–electron collisions), so the ensemble as a
whole does not gain or lose momentum from electron–electron collisions. These collisions can
however affect the ensemble-averaged relaxation rates indirectly by altering the shape of the
distribution function. This is a weak second-order effect [14] and, in any case, this is already
taken into account when we assume a drifted Maxwellian shape for the distribution.
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For convenience, we will convert the summation over the wavevector in
equations (3) and (4) to an integration over energy according to the following procedure:∑
k

f (vk)k
1

τm(k)
=
∑
k>0

f (vk)k
1

τm(k)
+
∑
k>0

f (v−k)(−k) 1

τm(−k)

=
∑
k>0

f (vk)k
1

τm(k)
−
∑
k>0

f (−vk)k 1

τm(k)

=
∑
k>0

[f (vk)− f (−vk)] k 1

τm(k)
= L

2π

∫
dk [f (vk)− f (−vk)] k 1

τm(k)

=
∫

dE D(E) [f (vE)− f (−vE)] k(E) 1

τm(E)
(5)

wherek(E) andv(E) are absolute values of electron wavevector and velocity at an energyE

andD(E) is the electron density of states which is found from a numerical solution of the
Schr̈odinger equation in a magnetic field as outlined in reference [5]. The same procedure is
applied to all other summations in equations (3) and (4).

3.1. Conditions conducive to the observation of negative velocity relaxation rates and
positive momentum relaxation rates for an electron ensemble

It is obvious from equation (5) that if we wish to realize a situation where the ensemble-
averaged momentum and velocity relaxation rates will have opposite signs, we will need to
centre the distribution function within the energy window where the signs are opposite. To
facilitate this process, we will need a narrow distribution and a wide window. A very low lattice
temperature (we will assume that the electron temperature> the lattice temperature) makes
the distribution function narrow, but it also makes the window narrower because it inhibits
acoustic phonon (forward) absorption which is the main cause for the velocity relaxation rate
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Figure 6. Ensemble momentum and velocity relaxation rates obtained by averaging over a drifted
Maxwellian distribution function. The rates are plotted versus the drift velocity. The thin and thick
curves indicate momentum and velocity relaxation rates respectively. A broken curve indicates a
negative rate and a solid curve a positive rate. The electron and lattice temperaturesTe = T = 77 K.
There is a window in the drift velocity (3.5× 107–6.5× 107 cm s−1) within which the ensemble
velocity relaxation rate is negative, but the ensemble momentum relaxation rate is positive.
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to be negative. Thus, arbitrary reduction of temperature does not help and there is an optimum
temperature. On the other hand, a low effective mass and a narrow cross-section of the wire
always help since they increase the energy separation between subbands and widen the window.
In fact, we did not find a negative ensemble-averaged velocity relaxation rate in GaAs wires
of reasonable cross-section and at reasonable magnetic fields (irrespective of the parameters
of the distribution function, namely the lattice temperature and the drift velocity), but found it
in InAs wires because of the much lower effective mass.

In figure 6, we show the calculated momentum and velocity relaxation rates averaged over
an electron ensemble described by a drifted Maxwellian with temperatureTe = Tlattice = 77 K
as functions of ensemble drift velocityvd . There is a range of drift velocity between 3.5×107

and 6.5×107 cm s−1 where the velocity relaxation rate is negative, but the momentum relaxation
rate is positive. The minimum drift velocity in this window is lower than the peak drift velocity
(4.2× 107 cm s−1) in bulk InAs [15], so it should be possible to observe this effect in real
situations.

4. Conclusions

In conclusion, we have shown that it is possible for an electron ensemble in a quantum wire
to have simultaneously a negative average velocity relaxation rate and yet a positive average
momentum relaxation rate when a magnetic field is present. Thus, the ensemble as a whole
gains velocity by colliding with the lattice but loses momentum. In the past, an ensemble-
averaged negative momentum relaxation rate was predicted in at least two contexts both of
which pertain to quantum wire structures. The first was associated with a dominance of polar
optical phonon forward absorption below the optical phonon emission threshold [16] and the
second arose from a preponderance of forward acoustic phonon absorption below the acoustic
phonon emission threshold [17]. Neither of these two effects required a magnetic field. We
point out that the effect discussed in this paper is different and requires a magnetic field.
The present effect leads to opposite signs of the ensemble-averaged momentum and velocity
relaxation rates which is, in some sense, more intriguing than either of the two rates becoming
negative individually. The negative ensemble-averaged velocity relaxation rate does not lead
to a negative absolute mobility [17]; instead, it precludes a stable velocity distribution. If
the ensemble drifts into the window where the rate is negative, the velocity will continue to
increase with time until the ensemble moves out of the window. Thereupon, a stable, steady-
state velocity distribution will be established with a positive ensemble-averaged relaxation
rate. Thus, the experimental manifestation of a negative velocity relaxation rate is simply a
pronounced (transient) velocity overshoot effect which can be enhanced (and controlled) by
an external magnetic field.
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